Skip to main content

Fiber optic origin and evolution

The history of fiber optic communication is relatively short. In 1977 , a test system was installed in England; Two years later, significant quantities of orders for this material were already produced.
Earlier, in 1959 , as a derivation of studies in physics focused on optics, a new use of light was discovered, which was called a laser beam, which was applied to telecommunications in order for messages to be transmitted to unusual speeds and wide coverage.
However, this use of the laser was very limited because there were no suitable conduits and channels to travel the electromagnetic waves caused by the rain of photons originating from the source called laser.
It was then that scientists and technicians specialized in optics directed their efforts to the production of a duct or channel, known today as the optical fiber. In 1966 , the proposal to use an optical guide for communication emerged.
This way of using light as an information carrier can be explained as follows: It is actually an electromagnetic wave of the same nature as radio waves, with the only difference that the wavelength is of the order of micrometers instead of meters or centimeters.
The concept of lightwave communications has been known for many years.
However, it was not until the mid-1970s that the results of the theoretical work were published. These indicated that it was possible to rely on a light beam in a flexible transparent fiber and thus provide an optical analog of the signaling by wires electronically.
The technical problem that had to be solved for the advance of the optical fiber lay in the fibers themselves, which absorbed light that hindered the process. For practical communication, the optical fiber must transmit detestable light signals for many kilometers.
Ordinary glass has a light beam of a few meters. New very pure glasses have been developed with much greater transparency than ordinary glass.
 These glasses began to be produced in the early seventies. This breakthrough gave impetus to the fiber optic industry. Lasers or light emitting diodes were used as a light source in the fiber optic cables. Both have to be miniaturized for fiber optic system components, which has required considerable research and development.
Lasers generate intense "coherent" light that remains on an extremely narrow path. The diodes emit "incoherent" light that is neither strong nor concentrated. What should be used depends on the technical requirements to design the given fiber optic circuit.

Comments

Popular posts from this blog

The most popular method and the method required in TIA-568

Choice of the reference method Some reference books and manuals show that to establish the reference power for loss, only a reference launch cable, launch and reception cable connected with a coupling adapter or even three reference cables is used.  In fact, industry standards include all three methods to establish a "0dB loss" reference.  The two or three-wire reference methods are acceptable for some tests and are the only way you can test some connectors, but it will reduce the loss you measure in the amount of loss between your reference wires when you set your "  You could start the test with faulty launch wires, which would cause all loss measurements to be incorrect.  This means that the inspection and testing of the reference cables are very important, in order to ensure that they are in good condition.  You could start the test with faulty launch wires, which would cause all loss measurements to be incorrect.  This means that the inspection and...

If we detect N photons from a coherent state of light for a measurement,

Short answer: A good order of magnitude rule of thumb for the maximum possible bandwidth of an optical fibre channel is about 1 petabit per second per optical mode. So a "single" mode fibre (fibre with one bound eigenfield) actually has in theory two such channels, one for each polarisation state of the bound eigenfield. I'll just concentrate on the theoretical capacity of a single, long-haul fibre; see roadrunner66's answer for discussion of the branching in an optical network. The fundamental limits always get down to a question of signal to noise in the measurement (i.e. demodulation by the receiver circuit). The one, fundamentally anavoidable, noise source on a fibre link is quantum shot noise, so I'll concentrate on that. Therefore, what follows will apply to a short fibre: other noise sources (such as Raman, amplified spontaneous emission from in-line optical amplifiers, Rayleigh scattering, Brillouin scattering) tend to become significant roughly in pro...

The cable types, the cable network hardware

The ways to build the OSP cables are specifically oriented to the strength of the cable, depending on whether they are buried directly or inside conductors, located underwater, or installed in the air on poles. The proper way for cable routing must be chosen. In some installations, several types of cable are even used. Having good construction plans can be useful when working with cable manufacturers to find the right types of cables and request sufficient quantities. You should always request more cable than is needed for the length of the path, in order to be able to store the service cable in the form of a loop, prepare the termination of the cable and save what you need in case it is necessary to Make a repair in the future. As well as the cable types, the cable network hardware types are very diverse and should be chosen in a way that is compatible with the cable types used. With so many hardware options, working with cable manufacturers is the most expeditious way to choose ha...