Skip to main content

Fiber optic origin and evolution

The history of fiber optic communication is relatively short. In 1977 , a test system was installed in England; Two years later, significant quantities of orders for this material were already produced.
Earlier, in 1959 , as a derivation of studies in physics focused on optics, a new use of light was discovered, which was called a laser beam, which was applied to telecommunications in order for messages to be transmitted to unusual speeds and wide coverage.
However, this use of the laser was very limited because there were no suitable conduits and channels to travel the electromagnetic waves caused by the rain of photons originating from the source called laser.
It was then that scientists and technicians specialized in optics directed their efforts to the production of a duct or channel, known today as the optical fiber. In 1966 , the proposal to use an optical guide for communication emerged.
This way of using light as an information carrier can be explained as follows: It is actually an electromagnetic wave of the same nature as radio waves, with the only difference that the wavelength is of the order of micrometers instead of meters or centimeters.
The concept of lightwave communications has been known for many years.
However, it was not until the mid-1970s that the results of the theoretical work were published. These indicated that it was possible to rely on a light beam in a flexible transparent fiber and thus provide an optical analog of the signaling by wires electronically.
The technical problem that had to be solved for the advance of the optical fiber lay in the fibers themselves, which absorbed light that hindered the process. For practical communication, the optical fiber must transmit detestable light signals for many kilometers.
Ordinary glass has a light beam of a few meters. New very pure glasses have been developed with much greater transparency than ordinary glass.
 These glasses began to be produced in the early seventies. This breakthrough gave impetus to the fiber optic industry. Lasers or light emitting diodes were used as a light source in the fiber optic cables. Both have to be miniaturized for fiber optic system components, which has required considerable research and development.
Lasers generate intense "coherent" light that remains on an extremely narrow path. The diodes emit "incoherent" light that is neither strong nor concentrated. What should be used depends on the technical requirements to design the given fiber optic circuit.

Comments

Popular posts from this blog

If we detect N photons from a coherent state of light for a measurement,

Short answer: A good order of magnitude rule of thumb for the maximum possible bandwidth of an optical fibre channel is about 1 petabit per second per optical mode. So a "single" mode fibre (fibre with one bound eigenfield) actually has in theory two such channels, one for each polarisation state of the bound eigenfield. I'll just concentrate on the theoretical capacity of a single, long-haul fibre; see roadrunner66's answer for discussion of the branching in an optical network. The fundamental limits always get down to a question of signal to noise in the measurement (i.e. demodulation by the receiver circuit). The one, fundamentally anavoidable, noise source on a fibre link is quantum shot noise, so I'll concentrate on that. Therefore, what follows will apply to a short fibre: other noise sources (such as Raman, amplified spontaneous emission from in-line optical amplifiers, Rayleigh scattering, Brillouin scattering) tend to become significant roughly in pro

ingle-mode fiber uses only one mode of light to propagate

Single-mode fiber uses only one mode of light to propagate through the fiber-optic core. In single-mode fiber-optic cabling, the core is considerably smaller (8 to 10 microns) in diameter. A 9/125 optical fiber indicates that the core fiber has a diameter of 9 microns and the surrounding cladding is 125 microns in diameter. The core in single-mode fiber is only approximately 10 times larger than the wavelength of the light it is carrying. This leaves very little room for the light to bounce around. As a result the data carrying light pulses in single-mode fiber are essentially transmitted in a straight line through the core. Typically single-mode uses a laser light source, which is more expensive to produce, requires higher levels of safety awareness, and can transmit data further than multimode. Single-mode (such as a 9/125) can carry data up to 3000 meters (9,840 ft.) according to the existing standard (note that the standard in this case may not reflect the physical limitation)

Copper, fiber or wireless network?

While for decades the debate about which one is better (copper, fiber or wireless network), increased interest in discussing wiring, it is now becoming irrelevant.  In communications technology and the end-user market, it seems, it has already been decided that, in general terms, the transmission media and many networks must combine all three.  Currently, for the designer of wiring networks, especially fiber optic networks, and for their clients, the task of deciding which means to use once the communication systems were chosen is very simple. Long-distance and external plant Almost all telephony system cables are fiber optic, except telecommunications systems that still use copper for the final connection to the home.  CATV companies use a high-performance coaxial cable inside homes, but it connects to a  fiber optic  backbone  network .  Backbone (  backbone  ) Internet consists of fiber in its entirety.  Most commercial buildings that are in heavily populated areas receive d